
ASAB Documentation

Ales Teska

Jun 28, 2021

Introduction

1 ASAB is designed to be powerful yet simple 3

2 ASAB is a right choice when 5

3 Indices and tables 35

Python Module Index 37

Index 39

i

ii

ASAB Documentation

Asynchronous Server App Boilerplate (or ASAB for short) is a microservice platform for Python 3.5+ and asyncio.
The aim of ASAB is to minimizes the amount of code that needs to be written when building a microservice or an
aplication server. ASAB is fully asynchronous using async/await syntax from Python 3.5, making your code modern,
non-blocking, speedy and hence scalable. We make every effort to build ASAB container-friendly so that you can
deploy ASAB-based microservice via Docker or Kubernetes in a breeze.

ASAB is the free and open-source software, available under BSD licence. It means that anyone is freely licenced
to use, copy, study, and change the software in any way, and the source code is openly shared so that people could
voluntarily improve the design of the software. Anyone can (and is encouraged to) use ASAB in his or her projects,
for free. A current maintainer is a TeskaLabs Ltd company.

ASAB is developed on GitHub. Contributions are welcome!

Introduction 1

https://teskalabs.com
https://github.com/TeskaLabs/asab/

ASAB Documentation

2 Introduction

CHAPTER 1

ASAB is designed to be powerful yet simple

Here is a complete example of the fully working microservice:

import asab

class MyApplication(asab.Application):
async def main(self):

print("Hello world!")
self.stop()

if __name__ == "__main__":
app = MyApplication()
app.run()

3

ASAB Documentation

4 Chapter 1. ASAB is designed to be powerful yet simple

CHAPTER 2

ASAB is a right choice when

• using Python 3.5+.

• utilizing asynchronous I/O (aka asyncio).

• building a microservice or an application server.

2.1 Getting started

Make sure you have both pip and at least version 3.5 of Python before starting. ASAB uses the new async/await
syntax, so earlier versions of python won’t work.

1. Install ASAB:

$ pip3 install asab

2. Create a file called main.py with the following code:

#!/usr/bin/env python3
import asab

class MyApplication(asab.Application):
async def main(self):

print("Hello world")

if __name__ == '__main__':
app = MyApplication()
app.run()

3. Run the server:

$ python3 main.py
Hello world

You are now successfully runinng an ASAB application server.

5

https://docs.python.org/3/library/asyncio.html
https://pip.pypa.io/en/stable/installing/

ASAB Documentation

4. Stop the application by Control-C.

Note: The ASAB is designed around a so-called event loop. It is meant primarily for server architectures. For that
reason, it doesn’t terminate and continue running and serving eventual requests.

2.1.1 Going into details

#!/usr/bin/env python3

ASAB application uses a Python 3.5+. This is specified a by hashbang line at the very begginig of the file, on the line
number 1.

import asab

ASAB is included from as asab module via an import statement.

class MyApplication(asab.Application):

Every ASAB Application needs to have an application object. It is a singleton; it means that the application must
create and operate precisely one instance of the application. ASAB provides the base Application class that you
need to inherit from to implement your custom application class.

async def main(self):
print("Hello world")

The Application.main() method is one of the application lifecycle methods, that you can override to implement
desired application functionality. The main method is a coroutine, so that you can await any tasks etc. in fully
asynchronous way. This method is called when ASAB application is executed and initialized. The lifecycle stage is
called “runtime”.

In this example, we just print a message to a screen.

if __name__ == '__main__':
app = MyApplication()
app.run()

This part of the code is executed when the Python program is launched. It creates the application object and executes
the Application.run() method. This is a standard way of how ASAB application is started.

2.1.2 Next steps

Check out tutorials about how to build ASAB based web server.

2.2 Web Server Tutorial

Welcome to a tutorial on how to create a simple web server with ASAB.

2.2.1 The code

6 Chapter 2. ASAB is a right choice when

https://en.wikipedia.org/wiki/Event_loop

ASAB Documentation

#!/usr/bin/env python3
import asab
import asab.web
import aiohttp.web

class MyWebApplication(asab.Application):

async def initialize(self):
self.add_module(asab.web.Module)
websvc = self.get_service("asab.WebService")
websvc.WebApp.router.add_get('/', self.index)

async def index(self, request):
return aiohttp.web.Response(text='Hello, world.\n')

if __name__ == '__main__':
app = MyWebApplication()
app.run()

To start the application, store above code in a file app.py.
Use python3 app.py -w to run it.

The ASAB web server is now available at http://localhost:8080/.

2.2.2 Deeper look

#!/usr/bin/env python3
import asab

class MyWebApplication(asab.Application):

async def initialize(self):
pass

if __name__ == '__main__':
app = MyWebApplication()
app.run()

This is a standard ASAB code that declares the application class and establishes main() function for the application.
The Application.initialize() method is an application lifecycle method that allows to extend standard
initialization of the application with a custom code.

import asab.web
import aiohttp.web

The ASAB web server is a module of ASAB, that is available at asab.web for importing. ASAB web server is built on
top of aiohttp.web library. You can freely use any functionality from aiohttp.web library, ASAB is designed to be as
much compatible as possible.

self.add_module(asab.web.Module)

2.2. Web Server Tutorial 7

http://localhost:8080/
https://docs.aiohttp.org/en/stable/web.html

ASAB Documentation

This is how you load the ASAB module into the application. The asab.web.Module provides a asab.
WebService aka a web server.

websvc = self.get_service("asab.WebService")

This is how locate a service.

websvc.WebApp.router.add_get('/', self.index)

The web service websvc provides default web application WebApp, which in turn provides a router. The router is
used to map URLs to respective handlers (self.index in this example). It means that if you access the web server
with a path /, it will be handled by a self.index().

async def index(self, request):
return aiohttp.web.Response(text='Hello, world.\n')

The index() method is a handler. A handler must be a coroutine that accepts a aiohttp.web.Request instance
as its only argument and returns a aiohttp.web.Response instance or equivalent.

For more information, go to aiohttp.web handler manual page.

2.3 The web server

ASAB provides a web server in a asab.web module. This module offers an integration of a aiohttp web server.

1. Before you start, make sure that you have aiohttp module installed.

$ pip3 install aiohttp

2. The following code creates a simple web server application

#!/usr/bin/env python3
import asab
import aiohttp

class MyApplication(asab.Application):

async def initialize(self):
Load the web service module
from asab.web import Module
self.add_module(Module)

Locate the web service
websvc = self.get_service("asab.WebService")

Create a container
container = asab.web.WebContainer(websvc, 'example:web', config={"listen": "0.

→˓0.0.0:8080"})

Add a route
container.WebApp.router.add_get('/hello', self.hello)

Simplistic view
async def hello(self, request):

return aiohttp.web.Response(text='Hello!\n')

(continues on next page)

8 Chapter 2. ASAB is a right choice when

https://docs.aiohttp.org/en/stable/web_quickstart.html#handler
http://aiohttp.readthedocs.io/en/stable/web.html

ASAB Documentation

(continued from previous page)

if __name__ == '__main__':
app = MyApplication()
app.run()

3. Test it with curl

$ curl http://localhost:8080/hello
Hello!

2.3.1 Web Service

class asab.web.service.WebService

Service localization example:

from asab.web import Module
self.add_module(Module)
svc = self.get_service("asab.WebService")

WebService.Webapp

An instance of a aiohttp.web.Application class.

svc.WebApp.router.add_get('/hello', self.hello)

2.3.2 Configuration

TODO: Listen at 0.0.0.0:80

2.3.3 Sessions

ASAB Web Service provides an implementation of the web sessions.

class asab.web.session.ServiceWebSession

TODO: . . .

asab.web.session.session_middleware(storage)

TODO: . . .

2.4 Authn module

Module asab.web.authn provides middlewares and classes to allow only authorized users access specified web
server endpoints. It also allows to forward requests to the authorization server via instance of OAuthForwarder.

Currently available authorization technologies include OAuth 2.0, public/private key and HTTP basic auth.

2.4. Authn module 9

ASAB Documentation

2.4.1 Middleware

authn_middleware_factory(app, implementation, *args, **kwargs):

First step is to define the authorization implementation, which can be the OAuth 2.0, public/private key or HTTP basic
auth. Depending on the implementation, there are arguments which further specify the authorization servers that are
going to be used.

When it comes to OAuth 2.0, there are methods for every OAuth 2.0 server, that is going to be used for authorization
and obtainment of the user identity. The relevant method is selected based on access token prefix, that is received from
the client in the HTTP request (Authorization header):

Authorization: Bearer <OAUTH-SERVER-ID>-<ACCESS_TOKEN>

The following example illustrates how to register a middleware inside the web server container with OAuth 2.0 imple-
mentation and GitHub method.

container.WebApp.middlewares.append(
asab.web.authn.authn_middleware_factory(self,

"oauth2client", # other implementations include: "basicauth" and "pubkeyauth"
methods=[
Use GitHub OAuth provider
asab.web.authn.oauth.GitHubOAuthMethod(),
],

)
)

2.4.2 Decorators

In order to require authorization for a specific endpoint and thus utilize the output of the registered middleware, it is
necessary to decorate its handler method with authn_required_handler decorator.

The decorator provide the handler method with an identity argument, which contains the user identity re-
ceived from the authorization server. Thus the user information can be further evaluated or included as part
of the response. To receive just the identity information but not force the authorization for the endpoint, the
authn_optional_handler can be used instead.

The following example illustrates how to use the authn_required_handler decorator in order to enforce the
authorization and receive user identity in the identity argument:

@asab.web.authn.authn_required_handler
async def user(self, request, *, identity):

return asab.web.rest.json_response(request=request, data={
'message': '"{}", you have accessed our secured "user" endpoint.'.

→˓format(identity),
})

2.4.3 Example

To see & try the full example which utilizes OAuth 2.0 middleware and decorators, please see the code in the following
link:

https://github.com/TeskaLabs/asab/blob/master/examples/web-authn-oauth.py

Another example serves to demonstrate the public/private key authorization via ASAB web client ssl cert authorization:

https://github.com/TeskaLabs/asab/blob/master/examples/web-authn-pubkey.py

10 Chapter 2. ASAB is a right choice when

https://github.com/TeskaLabs/asab/blob/master/examples/web-authn-oauth.py
https://github.com/TeskaLabs/asab/blob/master/examples/web-authn-pubkey.py

ASAB Documentation

2.5 The message-oriented middleware

Message-oriented middleware (MOM) sends and receive messages between distributed systems. MOM allows ap-
plication components to be distributed over heterogeneous platforms and reduces the complexity of developing such
applications. The middleware creates a distributed communications layer that insulates the application developer from
the details of the various network interfaces. It is a typical component of the microservice architecture, used for
asynchronous tasks, complements synchronous HTTP REST API.

MOM is typically integrated with Message Queue servers such as RabbitMQ or Kafka. Messages are distributed thru
these systems from and to various brokers. A message routing mechanism can be added to MQ server to steer a flow
of the messages, if needed.

More theory can be found here: https://en.wikipedia.org/wiki/Message-oriented_middleware

2.5.1 MOM Service

class asab.mom.service.MOMService

Message-oriented middleware is provided by a MOMService in a asab.mom module.

Service initialization and localization example:

from asab.mom import Module
self.add_module(Module)
svc = self.get_service("asab.MOMService")

2.5.2 Broker

class asab.mom.broker.Broker

The broker is an object that provides methods for sending and receiving messages. It is also responsible for a under-
laying transport of messages e.g. over the network to other brokers or MQ servers.

A base broker class Broker cannot be created directly, see available brokers below. Broker creating example:

from asab.mom.amqp import AMQPBroker
broker = AMQPBroker(app, config_section_name="bsfrgeocode:amqp")

Note: MOM Service has to be initialized.

Sending messages

Broker.publish(self, body, target:str=”, correlation_id:str=None)

Publish the message to a MQ server.

message = "Hello World!"
await broker.publish(message, target="example")

Receiving messages

Broker.subscribe(subscription:str)

2.5. The message-oriented middleware 11

https://en.wikipedia.org/wiki/Message-oriented_middleware

ASAB Documentation

Subscribe the broker to a specific subscription (e.g. topic or queue) on the MQ server. Once completed, messages
starts to flow in and they are routed based on the target.

Broker.add(target:str, handler, reply_to:str=None)

A message handler must be a coroutine that accept properties and body of the incoming message. Incoming messages
are routed based on their target to a specific handler. If there is no registered handler for a target, the message is
discarted.

broker.subscribe("topic")
broker.add('example', example_handler)

async def example_handler(self, properties, body):
print("Recevied", body)

Replying to a message

Message-oriented middleware is the asynchronous message passing model. By a mechanism of a message correlation,
MOM service allow to reply to a message in the handler.

Example of the handler:

async def example_handler(self, properties, body):
print("Recevied", body)
return "Hi there too"

Available brokers

class asab.mom.amqp.AMQPBroker

2.6 Metrics service

2.6.1 Enable logging of metrics

Metrics can be displayed in the log of the ASAB application. In order to enable this, enter following lines in the
configuration:

[logging]
levels=

asab.metrics INFO

2.6.2 Reference

class asab.metrics.Metrics(app)

class asab.metrics.Module(app)
Bases: asab.abc.module.Module

12 Chapter 2. ASAB is a right choice when

ASAB Documentation

2.7 Application

class asab.Application

The Application class maintains the global application state. You can provide your own implementation by
creating a subclass. There should be only one Application object in the process.

Subclassing:

import asab

class MyApplication(asab.Application):
pass

if __name__ == '__main__':
app = MyApplication()
app.run()

Direct use of Application object:

import asab

if __name__ == '__main__':
app = asab.Application()
app.run()

2.7.1 Event Loop

Application.Loop

The asyncio event loop that is used by this application.

asyncio.ensure_future(my_coro(), loop=Application.Loop)

2.7.2 Application Lifecycle

The ASAB is designed around the Inversion of control principle. It means that the ASAB is in control of the application
lifecycle. The custom-written code receives the flow from ASAB via callbacks or handlers. Inversion of control is
used to increase modularity of the code and make it extensible.

The application lifecycle is divided into 3 phases: init-time, run-time and exit-time.

Init-time

Application.__init__()

The init-time happens during Application constructor call. The Publish-Subscribe message Application.
init! is published during init-time. The Config is loaded during init-time.

Application.initialize()

The application object executes asynchronous callback Application.initialize(), which can be overriden
by an user.

2.7. Application 13

https://en.wikipedia.org/wiki/Inversion_of_control

ASAB Documentation

class MyApplication(asab.Application):
async def initialize(self):

Custom initialization
from module_sample import Module
self.add_module(Module)

Run-time

Application.run()

Enter a run-time. This is where the application spends the most time typically. The Publish-Subscribe message
Application.run! is published when run-time begins.

The method returns the value of Application.ExitCode.

Application.main()

The application object executes asynchronous callback Application.main(), which can be overriden. If
main() method is completed without calling stop(), then the application server will run forever (this is the default
behaviour).

class MyApplication(asab.Application):
async def main(self):

print("Hello world!")
self.stop()

Application.stop(exit_code:int=None)

The method Application.stop() gracefully terminates the run-time and commence the exit-time. This method
is automatically called by SIGINT and SIGTERM. It also includes a response to Ctrl-C on UNIX-like system.
When this method is called 3x, it abruptly exits the application (aka emergency abort).

The parameter exit_code allows you to specify the application exit code (see Exit-Time chapter).

Note: You need to install win32api module to use Ctrl-C or an emergency abord properly with ASAB on Win-
dows. It is an optional dependency of ASAB.

Exit-time

Application.finalize()

The application object executes asynchronous callback Application.finalize(), which can be overriden by
an user.

class MyApplication(asab.Application):
async def finalize(self):

Custom finalization
...

The Publish-Subscribe message Application.exit! is published when exit-time begins.

Application.set_exit_code(exit_code:int, force:bool=False)

Set the exit code of the application, see os.exit() in the Python documentation. If force is False, the exit code
will be set only if the previous value is lower than the new one. If force is True, the exit code value is set to a
exit_code disregarding the previous value.

Application.ExitCode

14 Chapter 2. ASAB is a right choice when

ASAB Documentation

The actual value of the exit code.

The example of the exit code handling in the main() function of the application.

if __name__ == '__main__':
app = asab.Application()
exit_code = app.run()
sys.exit(exit_code)

2.7.3 Module registry

For more details see Module class.

Application.add_module(module_class)

Initialize and add a new module. The module_class class will be instantiated during the method call.

class MyApplication(asab.Application):
async def initialize(self):

from my_module import MyModule
self.add_module(MyModule)

Application.Modules

A list of modules that has been added to the application.

2.7.4 Service registry

Each service is identified by its unique service name. For more details see Service class.

Application.get_service(service_name)

Locate a service by its service name in a registry and return the Service object.

svc = app.get_service("service_sample")
svc.hello()

Application.Services

A dictionary of registered services.

2.7.5 Command-line parser

Application.create_argument_parser(prog=None, usage=None, description=None, epi-
log=None, prefix_chars=’-’, fromfile_prefix_chars=None,
argument_default=None, conflict_handler=’error’,
add_help=True)→ argparse.ArgumentParser

Creates an argparse.ArgumentParser. This method can be overloaded to adjust command-line argument
parser.

Please refer to Python standard library argparse for more details about function arguments.

Application.parse_args()

The application object calls this method during init-time to process a command-line arguments. argparse is used
to process arguments. You can overload this method to provide your own implementation of command-line argument
parser.

2.7. Application 15

ASAB Documentation

Application.Description

The Description attribute is a text that will be displayed in a help text (--help). It is expected that own value
will be provided. The default value is "" (empty string).

2.7.6 UTC Time

Application.time()→ float

Return the current “event loop time” in seconds since the epoch as a floating point number. The specific date of the
epoch and the handling of leap seconds is platform dependent. On Windows and most Unix systems, the epoch is
January 1, 1970, 00:00:00 (UTC) and leap seconds are not counted towards the time in seconds since the epoch. This
is commonly referred to as Unix time.

A call of the time.time() function could be expensive. This method provides a cheaper version of the call that
returns a current wall time in UTC.

2.8 Configuration

asab.Config

The configuration is provided by Config object which is a singleton. It means that you can access Config from
any place of your code, without need of explicit initialisation.

import asab

Initialize application object and hence the configuration
app = asab.Application()

Access configuration values anywhere
my_conf_value = asab.Config['section_name']['key1']

2.8.1 Based on ConfigParser

The Config is inherited from Python Standard Library configparser.ConfigParser class. which imple-
ments a basic configuration language which provides a structure similar to what’s found in Microsoft Windows INI
files.

class asab.config.ConfigParser

Example of the configuration file:

[bitbucket.org]
User = hg

[topsecret.server.com]
Port = 50022
ForwardX11 = no

And this is how you access configuration values:

>>> asab.Config['topsecret.server.com']['ForwardX11']
'no'

16 Chapter 2. ASAB is a right choice when

ASAB Documentation

2.8.2 Multiline configuration entry

A multiline configuration entries are supported. An example:

[section]
key=

line1
line2
line3

another_key=foo

2.8.3 Automatic load of configuration

If a configuration file name is specified, the configuration is automatically loaded from a configuration file during ini-
tialiation time of Application. The configuration file name can be specified by one of -c command-line argument
(1), ASAB_CONFIG environment variable (2) or config [general] config_file default value (3).

./sample_app.py -c ./etc/sample.conf

2.8.4 Including other configuration files

You can specify one or more additional configuration files that are loaded and merged from an main configuration
file. It is done by [general] include configuration value. Multiple paths are separated by os.pathsep (: on
Unix). The path can be specified as a glob (e.g. use of * and ? wildcard characters), it will be expanded by glob
module from Python Standard Library. Included configuration files may not exists, this situation is silently ignored.

[general]
include=./etc/site.conf:./etc/site.d/*.conf

You can also use a multiline configuration entry:

[general]
include=

./etc/site.conf

./etc/site.d/*.conf

2.8.5 Configuration default values

Config.add_defaults(dictionary)

This is how you can extend configuration default values:

asab.Config.add_defaults(
{

'section_name': {
'key1': 'value',
'key2': 'another value'

},
'other_section': {

'key3': 'value',
},

}
)

2.8. Configuration 17

ASAB Documentation

Only simple types (string, int and float) are allowed in the configuration values. Don’t use complex types such
as lists, dictionaries or objects because these are impossible to provide via configuration files etc.

2.8.6 Environment variables in configration

Environment variables found in values are automatically expanded.

[section_name]
persistent_dir=${HOME}/.myapp/

>>> asab.Config['section_name']['persistent_dir']
'/home/user/.myapp/'

There is a special environment variable ${THIS_DIR} that is expanded to a directory that contains a current configu-
ration file. It is useful in complex configurations that utilizes included configuration files etc.

[section_name]
my_file=${THIS_DIR}/my_file.txt

Another environment variable ${HOSTNAME} contains the application hostname to be used f. e. in logging file path.

[section_name]
my_file=${THIS_DIR}/${HOSTNAME}/my_file.txt

2.8.7 Passwords in configration

[passwords] section in the configuration serves to securely store passwords, which are then not shown publicly in the
default API config endpoint’s output.

It is convenient for the user to store passwords at one place, so that they are not repeated in many sections of the config
file(s).

Usage is as follows:

[connection:KafkaConnection]
password=${passwords:kafka_password}

[passwords]
kafka_password=<MY_SECRET_PASSWORD>

2.8.8 Obtaining seconds

Config.getseconds()

The seconds can be obtained using getseconds() method for values with different time units specified in the configu-
ration:

[sleep]
sleep_time=5.2s
another_sleep_time=10d

The available units are:

• y . . . years

18 Chapter 2. ASAB is a right choice when

ASAB Documentation

• M . . . months

• w . . . weeks

• d . . . days

• h . . . hours

• m . . . minutes

• s . . . seconds

• ms .. miliseconds

If no unit is specified, float of seconds is expected.

The obtainment of the second value in the code can be achieved in two ways:

self.SleepTime = asab.Config["sleep"].getseconds("sleep_time")
self.AnotherSleepTime = asab.Config.getseconds("sleep", "another_sleep_time")

2.9 Logging

ASAB logging is built on top of a standard Python logging module. It means that it logs to stderr when running
on a console and ASAB also provides file and syslog output (both RFC5424 and RFC3164) for background mode of
operations.

Log timestamps are captured with sub-second precision (depending on the system capabilities) and displayed including
microsecond part.

2.9.1 Recommended use

We recommend to create a logger L in every module that captures all necessary logging output. Alternative logging
strategies are also supported.

import logging
L = logging.getLogger(__name__)

...

L.warning("Hello world!")

Example of the output to the console:

25-Mar-2018 23:33:58.044595 WARNING myapp.mymodule Hello world!

2.9.2 Logging Levels

ASAB uses Python logging levels with the addition of LOG_NOTICE level. LOG_NOTICE level is similar to
logging.INFO level but it is visible in even in non-verbose mode.

L.log(asab.LOG_NOTICE, "This message will be visible regardless verbose configuration.
→˓")

2.9. Logging 19

ASAB Documentation

Level Numeric value Syslog Severity level
CRITICAL 50 Critical / crit / 2
ERROR 40 Error / err / 3
WARNING 30 Warning / warning / 4
LOG_NOTICE 25 Notice / notice / 5
INFO 20 Informational / info / 6
DEBUG 10 Debug / debug / 7
NOTSET 0

2.9.3 Verbose mode

The command-line argument -v enables verbose logging. It means that log entries with levels DEBUG and INFO will
be visible. It also enables asyncio debug logging.

The actual verbose mode is avaiable at asab.Config["logging"]["verbose"] boolean option.

L.debug("This message will be visible only in verbose mode.")

2.9.4 Structured data

ASAB supports a structured data to be added to a log entry. It follows the RFC 5424, section STRUCTURED-DATA.
Structured data are a dictionary, that has to be seriazable to JSON.

L.warning("Hello world!", struct_data={'key1':'value1', 'key2':2})

Example of the output to the console:

25-Mar-2018 23:33:58.044595 WARNING myapp.mymodule [sd key1="value1" key2="2"]
Hello world!

2.9.5 Logging to file

The command-line argument -l on command-line enables logging to file. Also non-empty path option in the section
[logging:file] of configuration file enables logging to file as well.

Example of the configuration file section:

[logging:file]
path=/var/log/asab.log
format="%%(asctime)s %%(levelname)s %%(name)s %%(struct_data)s%%(message)s",
datefmt="%%d-%%b-%%Y %%H:%%M:%%S.%%f"
backup_count=3
rotate_every=1d

When the deployment expects more instances of the same application to be logging into the same file, it is recom-
mended, that the variable hostname is used in the file path:

[logging:file]
path=/var/log/${HOSTNAME}/asab.log

In this way, the applications will log to seperate log files in different folders, which is an intended behavior, since race
conditions may occur when different application instances log into the same file.

20 Chapter 2. ASAB is a right choice when

https://tools.ietf.org/html/rfc5424

ASAB Documentation

2.9.6 Logging to console

ASAB will log to the console only if it detects that it runs in the foreground respectively on the terminal using os.
isatty or if the environment variable ASABFORCECONSOLE is set to 1. This is useful setup for eg. PyCharm.

Log rotation

ASAB supports a log rotation. The log rotation is triggered by a UNIX signal SIGHUP, which can be used e.g.
to integrate with logrotate utility. It is implemented using logging.handlers.RotatingFileHandler
from a Python standard library. Also, a time-based log rotation can be configured using rotate_every option.

backup_count specifies a number of old files to be kept prior their removal. The system will save old log files by
appending the extensions ‘.1’, ‘.2’ etc., to the filename.

rotate_every specifies an time interval of a log rotation. Default value is empty string, which means that the
time-based log rotation is disabled. The interval is specified by an integer value and an unit, e.g. 1d (for 1 day) or 30M
(30 minutes). Known units are H for hours, M for minutes, d for days and s for seconds.

2.9.7 Logging to syslog

The command-line argument -s enables logging to syslog.

A configuration section [logging:syslog] can be used to specify details about desired syslog logging.

Example of the configuration file section:

[logging:syslog]
enabled=true
format=5
address=tcp://syslog.server.lan:1554/

enabled is equivalent to command-line switch -s and it enables syslog logging target.

format speficies which logging format will be used. Possible values are:

• 5 for (new) syslog format (RFC 5424) ,

• 3 for old BSD syslog format (RFC 3164), typically used by /dev/log and

• m for Mac OSX syslog flavour that is based on BSD syslog format but it is not fully compatible.

The default value is 3 on Linux and m on Mac OSX.

address specifies the location of the Syslog server. It could be a UNIX path such as /dev/log or URL. Possible
URL values:

• tcp://syslog.server.lan:1554/ for Syslog over TCP

• udp://syslog.server.lan:1554/ for Syslog over UDP

• unix-connect:///path/to/syslog.socket for Syslog over UNIX socket (stream)

• unix-sendto:///path/to/syslog.socket for Syslog over UNIX socket (datagram), equivalent to
/path/to/syslog.socket, used by a /dev/log.

The default value is a /dev/log on Linux or /var/run/syslog on Mac OSX.

2.9. Logging 21

https://en.wikipedia.org/wiki/Log_rotation
https://tools.ietf.org/html/rfc5424
https://tools.ietf.org/html/rfc3164

ASAB Documentation

2.9.8 Reference

class asab.log.AsyncIOHandler(loop, family, sock_type, address, facility=17)
Bases: logging.Handler

A logging handler similar to a standard logging.handlers.SocketHandler that utilizes asyncio.
It implements a queue for decoupling logging from a networking. The networking is fully event-driven via
asyncio mechanisms.

emit(record)
This is the entry point for log entries.

class asab.log.Logging(app)
Bases: object

rotate()

class asab.log.MacOSXSyslogFormatter(fmt=None, datefmt=None, style=’%’, sd_id=’sd’)
Bases: asab.log.StructuredDataFormatter

It implements Syslog formatting for Mac OSX syslog (aka format m).

class asab.log.StructuredDataFormatter(facility=16, fmt=None, datefmt=None, style=’%’,
sd_id=’sd’, use_color: bool = False)

Bases: logging.Formatter

The logging formatter that renders log messages that includes structured data.

BLACK = 0

BLUE = 4

CYAN = 6

GREEN = 2

MAGENTA = 5

RED = 1

WHITE = 7

YELLOW = 3

empty_sd = ''

format(record)
Format the specified record as text.

formatTime(record, datefmt=None)
Return the creation time of the specified LogRecord as formatted text.

render_struct_data(struct_data)
Return the string with structured data.

class asab.log.SyslogRFC3164Formatter(fmt=None, datefmt=None, style=’%’, sd_id=’sd’)
Bases: asab.log.StructuredDataFormatter

Implementation of a legacy or BSD Syslog (RFC 3164) formatting (aka format 3).

class asab.log.SyslogRFC5424Formatter(fmt=None, datefmt=None, style=’%’, sd_id=’sd’)
Bases: asab.log.StructuredDataFormatter

It implements Syslog formatting for Mac OSX syslog (aka format 5).

empty_sd = ' '

22 Chapter 2. ASAB is a right choice when

ASAB Documentation

2.10 Publish-Subscribe

Publish–subscribe is a messaging pattern where senders of messages, called publishers, send the messages to receivers,
called subscribers, via PubSub message bus. Publishers don’t directly interact with subscribers in any way. Similarly,
subscribers express interest in one or more message types and only receive messages that are of interest, without
knowledge of which publishers, if any, there are.

class asab.PubSub(app)

ASAB PubSub operates with a simple messages, defined by their message type, which is a string. We recommend to
add ! (explamation mark) at the end of the message type in order to distinguish this object from other types such as
Python class names or functions. Example of the message type is e.g. Application.run! or Application.
tick/600!.

The message can carry an optional positional and keyword arguments. The delivery of a message is implemented as a
the standard Python function.

Note: There is an default, application-wide Publish-Subscribe message bus at Application.PubSub that can
be used to send messages. Alternatively, you can create your own instance of PubSub and enjoy isolated PubSub
delivery space.

2.10.1 Subscription

PubSub.subscribe(message_type, callback)

Subscribe to a message type. Messages will be delivered to a callback callable (function or method). The
callback can be a standard callable or an async coroutine. Asynchronous callback means that the delivery of
the message will happen in a Future, asynchronously.

Callback callable will be called with the first argument

Example of a subscription to an Application.tick! messages.

class MyClass(object):
def __init__(self, app):

app.PubSub.subscribe("Application.tick!", self.on_tick)

def on_tick(self, message_type):
print(message_type)

Asynchronous version of the above:

class MyClass(object):
def __init__(self, app):

app.PubSub.subscribe("Application.tick!", self.on_tick)

async def on_tick(self, message_type):
await asyncio.sleep(5)
print(message_type)

PubSub.subscribe_all(obj)

To simplify the process of subscription to PubSub, ASAB offers the decorator-based “subscribe all” functionality.

In the followin example, both on_tick() and on_exit() methods are subscribed to Application.PubSub
message bus.

2.10. Publish-Subscribe 23

ASAB Documentation

class MyClass(object):
def __init__(self, app):

app.PubSub.subscribe_all(self)

@asab.subscribe("Application.tick!")
async def on_tick(self, message_type):

print(message_type)

@asab.subscribe("Application.exit!")
def on_exit(self, message_type):

print(message_type)

PubSub.unsubscribe(message_type, callback)

Unsubscribe from a message delivery.

class asab.Subscriber(pubsub=None, *message_types)
Subscriber object allows to consume PubSub messages in coroutines. It subscribes for various message
types and consumes them. It works on FIFO basis (First message In, first message Out). If pubsub argument
is None, the initial subscription is skipped.

subscriber = asab.Subscriber(
app.PubSub,
"Application.tick!",
"Application.stop!"

)

message()
Wait for a message asynchronously. Returns a three-members tuple (message_type, args,
kwargs).

Example of the await message() use:

async def my_coroutine(app):
Subscribe for a two application events
subscriber = asab.Subscriber(

app.PubSub,
"Application.tick!",
"Application.exit!"

)
while True:

message_type, args, kwargs = await subscriber.message()
if message_type == "Application.exit!":

break
print("Tick.")

subscribe(pubsub, message_type)
Subscribe for more message types. This method can be called many times with various pubsub objects.

The subscriber object can be also used as an asynchonous generator. The example of the subscriber object usage in
async for statement:

async def my_coroutine(self):
Subscribe for a two application events
subscriber = asab.Subscriber(

self.PubSub,
"Application.tick!",
"Application.exit!"

(continues on next page)

24 Chapter 2. ASAB is a right choice when

ASAB Documentation

(continued from previous page)

)
async for message_type, args, kwargs in subscriber:

if message_type == "Application.exit!":
break;

print("Tick.")

2.10.2 Publishing

PubSub.publish(message_type, *args, **kwargs)

Publish a message to the PubSub message bus. It will be delivered to each subscriber synchronously. It means that the
method returns after each subscribed callback is called.

The example of a message publish to the Application.PubSub message bus:

def my_function(app):
app.PubSub.publish("mymessage!")

Asynchronous publishing of a message is requested by asynchronously=True argument. The publish()
method returns immediatelly and the delivery of the message to subscribers happens, when control returns to the event
loop.

The example of a asynchronous version of a message publish to the Application.PubSub message bus:

def my_function(app):
app.PubSub.publish("mymessage!", asynchronously=True)

2.10.3 Synchronous vs. asynchronous messaging

ASAB PubSub supports both modes of a message delivery: synchronous and asynchronous. Moreover, PubSub also
deals with modes, when asynchronous code (coroutine) does publish to synchronous code and vice versa.

Sync publish Async publish
Sync subscribe Called immediately call_soon(...)
Async subscribe ensure_future(...) call_soon(...) & ensure_future(...)

2.10.4 Application-wide PubSub

Application.PubSub

The ASAB provides the application-wide Publish-Subscribe message bus.

Well-Known Messages

This is a list of well-known messages, that are published on a Application.PubSub by ASAB itself.

Application.init!

This message is published when application is in the init-time. It is actually one of the last things done in init-time, so
the application environment is almost ready for use. It means that configuration is loaded, logging is setup, the event
loop is constructed etc.

2.10. Publish-Subscribe 25

ASAB Documentation

Application.run!

This message is emitted when application enters the run-time.

Application.stop!

This message is emitted when application wants to stop the run-time. It can be sent multiple times because of a
process of graceful run-time termination. The first argument of the message is a counter that increases with every
Application.stop! event.

Application.exit!

This message is emitted when application enter the exit-time.

Application.tick!

Application.tick/10!

Application.tick/60!

Application.tick/300!

Application.tick/600!

Application.tick/1800!

Application.tick/3600!

Application.tick/43200!

Application.tick/86400!

The application publish periodically “tick” messages. The default tick frequency is 1 second but you can change it
by configuration [general] tick_period. Application.tick! is published every tick. Application.
tick/10! is published every 10th tick and so on.

Application.hup!

This message is emitted when application receives UNIX signal SIGHUP or equivalent.

2.11 Service

class asab.Service(app)

Service objects are registered at the service registry, managed by an application object. See Application.
Services for more details.

An example of a typical service class skeleton:

class MyService(asab.Service):

def __init__(self, app, service_name):
super().__init__(app, service_name)
...

async def initialize(self, app):
...

async def finalize(self, app):
...

(continues on next page)

26 Chapter 2. ASAB is a right choice when

ASAB Documentation

(continued from previous page)

def service_method(self):
....

This is how a service is created and registered:

mysvc = MyService(app, "my_service")

This is how a service is located and used:

mysvc = app.get_service("my_service")
mysvc.service_method()

Service.Name

Each service is identified by its name.

Service.App

A reference to an Application object instance.

2.11.1 Lifecycle

Service.initialize(app)

Called when the service is initialized. It can be overriden by an user.

Service.finalize(app)

Called when the service is finalized e.g. during application exit-time. It can be overriden by an user.

2.12 Module

class asab.Module

Modules are registered at the module registry, managed by an application object. See Application.Modules for
more details. Module can be loaded by ASAB and typically provides one or more Service objects.

2.12.1 Structure

Recommended structure of the ASAB module:

mymodule/
__init__.py
myservice.py

Content of the __init__.py:

import asab
from .myservice import MyService

Extend ASAB configuration defaults
asab.Config.add_defaults({

'mymodule': {

(continues on next page)

2.12. Module 27

ASAB Documentation

(continued from previous page)

'foo': 'bar'
}

})

class MyModule(asab.Module):
def __init__(self, app):

super().__init__(app)
self.service = MyService(app, "MyService")

And this is how the module is loaded:

from mymodule import MyModule
app.add_module(MyModule)

For more details see Application.add_module.

2.12.2 Lifecycle

Module.initialize(app)

Called when the module is initialized. It can be overriden by an user.

Module.finalize(app)

Called when the module is finalized e.g. during application exit-time. It can be overriden by an user.

2.13 Various utility classes

2.13.1 Singleton

class asab.abc.singleton.Singleton
The singleton pattern is a software design pattern that restricts the instantiation of a class to one object.

Note: The implementation idea is borrowed from “Creating a singleton in Python” question on StackOverflow.

classmethod delete(singleton_cls)
The method for an intentional removal of the singleton object. It shouldn’t be used unless you really know
what you are doing.

One use case is a unit test, which removes an Application object after each iteration.

Usage:

import asab

class MyClass(metaclass=asab.Singleton):
...

2.13.2 Persistent dictionary

class asab.pdict.PersistentDict(path)
Bases: dict

28 Chapter 2. ASAB is a right choice when

https://en.wikipedia.org/wiki/Singleton_pattern
https://stackoverflow.com/questions/6760685/creating-a-singleton-in-python

ASAB Documentation

The persistent dictionary works as the regular Python dictionary but the content of the dictionary is stored in
the file. You cat think of a PersistentDict as a simple key-value store. It is not optimized for a frequent
access. This class provides common dict interface.

Warning: You must explicitly load() and store() content of the dictionary Warning: You can only store objects
in the persistent dictionary that are serializable.

load()→ None
Load content of file as dictionary.

store()→ None
Explicitly store content of persistent dictionary to file

update(other=(), **kwds)→ None
Update D from mapping/iterable E and F. * If E present and has a .keys() method, does: for k in E: D[k] =
E[k] * If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v * In either case, this is followed
by: for k, v in F.items(): D[k] = v

Inspired by a https://github.com/python/cpython/blob/3.8/Lib/_collections_abc.py

Note: A recommended way of initializing the persistent dictionary:

PersistentState = asab.PersistentDict("some.file")
PersistentState.setdefault('foo', 0)
PersistentState.setdefault('bar', 2)

2.13.3 Timer

class asab.timer.Timer(app, handler, autorestart=False)→ Timer.
Bases: object

The relative and optionally repeating timer for asyncio.

This class is simple relative timer that generate an event after a given time, and optionally repeating in regular
intervals after that.

Parameters

• app – An ASAB application.

• handler – A coro or future that will be called when a timer triggers.

• autorestart (boolean) – If True then a timer will be automatically restarted after
triggering.

Variables

• Handler – A coro or future that will be called when a timer triggers.

• Task – A future that represent the timer task.

• App – An ASAB app.

• AutoRestart (boolean) – If True then a timer will be automatically restarted after
triggering.

The timer object is initialized as stopped.

Note: The implementation idea is borrowed from “Python - Timer with asyncio/coroutine” question on Stack-
Overflow.

is_started()→ boolean
Return True is the timer is started otherwise returns False.

2.13. Various utility classes 29

https://en.wikipedia.org/wiki/Key-value_database
https://github.com/python/cpython/blob/3.8/Lib/_collections_abc.py
https://stackoverflow.com/questions/45419723/python-timer-with-asyncio-coroutine

ASAB Documentation

restart(timeout)
Restart the timer.

Parameters timeout (float/int) – A timer delay in seconds.

start(timeout)
Start the timer.

Parameters timeout (float/int) – A timer delay in seconds.

stop()
Stop the timer.

2.13.4 Sockets

class asab.socket.StreamSocketServerService(app, service_name)
Bases: asab.abc.service.Service

Example of use:

class ServiceMyProtocolServer(asab.StreamSocketServerService):

async def initialize(self, app): host = asab.Config.get(‘http’, ‘host’) port =
asab.Config.getint(‘http’, ‘port’)

L.debug(“Starting server on {} {} . . . ”.format(host, port)) await self.create_server(app, MyPro-
tocol, [(host, port)])

create_server(app, protocol, addrs)

finalize(app)

2.14 Installation

ASAB is distributed via pypi.

2.14.1 Install ASAB using pip

This is the recommended installation method.

$ pip install asab

2.14.2 Install ASAB using easy_install

$ easy_install asab

2.14.3 Install ASAB for a GitHub

To install ASAB from a master branch of the GIT repository, use following command.

Note: Git has to be installed in order to successfuly complete the installation.

30 Chapter 2. ASAB is a right choice when

https://pypi.org/project/asab/

ASAB Documentation

$ pip install git+https://github.com/TeskaLabs/asab.git

2.15 ASAB Command-line interface

ASAB-based application provides the command-line interface by default. Here is an overview of the common
command-line arguments.

-h, --help

Show a help.

2.15.1 Configuration

-c <CONFIG>,--config <CONFIG>

Load configuration file from a file CONFIG.

2.15.2 Logging

-v, --verbose

Increase the logging level to DEBUG aka be more verbose about what is happening.

-l <LOG_FILE>,--log-file <LOG_FILE>

Log to a file LOG_FILE.

-s, --syslog

Log to a syslog.

2.15.3 Daemon

Python module python-daemon has to be installed in order to support daemonosation functions.

$ pip3 install asab python-daemon

-d, --daemonize

Launch the application in the background aka daemonized.

Daemon-related section of Config file:

[daemon]
pidfile=/var/run/myapp.pid
uid=nobody
gid=nobody
working_dir=/tmp

Configuration options pidfile, uid , gid and working_dir are supported.

-k, --kill

Shutdown the application running in the background (started previously with -d argument).

2.15. ASAB Command-line interface 31

ASAB Documentation

2.16 Containerisation

ASAB is designed for deployment into containers such as LXC/LXD or Docker. It allows to build e.g. microservices
that provides REST interface or consume MQ messages while being deployed into a container for a sake of the
infrastructure flexibility.

2.16.1 ASAB in a LXC/LXD container

1. Prepare LXC/LXD container based on Alpine Linux

$ lxc launch images:alpine/3.10 asab

2. Swich into a container

$ lxc exec asab -- /bin/ash

3. Prepare Python3 environment

$ apk update
$ apk upgrade
$ apk add --no-cache python3

$ python3 -m ensurepip

4. Deploy ASAB

$ apk add --virtual .buildenv python3-dev gcc musl-dev git
$ pip3 install git+https://github.com/TeskaLabs/asab
$ apk del .buildenv

5. Deploy dependencies

$ pip3 install python-daemon

7. Use OpenRC to automatically start/stop ASAB application

$ vi /etc/init.d/asab-app

Adjust the example of OpenRC init file.

$ chmod a+x /etc/init.d/asab-app
$ rc-update add asab-app

Note: If you need to install python packages that require compilation using C compiler, you have to add following
dependencies:

$ apk add --virtual .buildenv python3-dev
$ apk add --virtual .buildenv gcc
$ apk add --virtual .buildenv musl-dev

And removal of the build tools after pip install:

$ apk del .buildenv

32 Chapter 2. ASAB is a right choice when

https://github.com/TeskaLabs/asab/blob/master/doc/asab-openrc

ASAB Documentation

2.16.2 Docker Remote API

In order for ASAB applications to read the Docker container name as well as other information related to the container
to be used in logs, metrics and other analysis, the Docker Remote API must be enabled.

To do so:

1. Open the docker service file

vi /lib/systemd/system/docker.service

2. Find the line which starts with ExecStart and add -H=tcp://0.0.0.0:2375

3. Save the file

4. Reload the docker daemon and restart the Docker service

sudo systemctl daemon-reload && sudo service docker restart

Then in the ASAB application’s configuration, provide the Docker Socket path in docker_socket configuration option:

[general]
docker_socket=<YOUR_DOCKER_SOCKET_FILE>

Thus, the metric service as well as log manager can use the container name as hostname instead of container ID, which
provides better readability when analyzing the logs and metrics, typically using InfluxDB and Grafana.

2.17 systemd

1. Create a new Systemd unit file in /etc/systemd/system/:

$ sudo vi /etc/systemd/system/asab.service

Adjust the example of SystemD unit file.

2. Let systemd know that there is a new service:

$ sudo systemctl enable asab

To reload existing unit file after changing, use this:

$ sudo systemctl daemon-reload

3. ASAB Application Server service for systemd is now ready.

2.17.1 Start of ASAB Server

$ sudo service asab start

2.17.2 Stop of ASAB Server

$ sudo service asab stop

2.17. systemd 33

https://github.com/TeskaLabs/asab/blob/master/doc/asab.service

ASAB Documentation

34 Chapter 2. ASAB is a right choice when

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

35

ASAB Documentation

36 Chapter 3. Indices and tables

Python Module Index

a
asab.abc, 28
asab.abc.singleton, 28
asab.log, 22
asab.metrics, 12
asab.pdict, 28
asab.socket, 30
asab.timer, 29

37

ASAB Documentation

38 Python Module Index

Index

Symbols
-c <CONFIG>,-config <CONFIG>

command line option, 31
-d , -daemonize

command line option, 31
-h , -help

command line option, 31
-k , -kill

command line option, 31
-l <LOG_FILE>,-log-file <LOG_FILE>

command line option, 31
-s , -syslog

command line option, 31
-v , -verbose

command line option, 31
__init__() (asab.Application method), 13

A
add() (asab.mom.broker.Broker method), 12
add_defaults() (asab.Config method), 17
add_module() (asab.Application method), 15
AMQPBroker (class in asab.mom.amqp), 12
Application (class in asab), 13
Application.Description (in module asab), 15
Application.exit!

command line option, 26
Application.hup!

command line option, 26
Application.init!

command line option, 25
Application.run!

command line option, 25
Application.stop!

command line option, 26
Application.tick!

command line option, 26
Application.tick/10!

command line option, 26
Application.tick/1800!

command line option, 26
Application.tick/300!

command line option, 26
Application.tick/3600!

command line option, 26
Application.tick/43200!

command line option, 26
Application.tick/60!

command line option, 26
Application.tick/600!

command line option, 26
Application.tick/86400!

command line option, 26
asab.abc (module), 28
asab.abc.singleton (module), 28
asab.log (module), 22
asab.metrics (module), 12
asab.pdict (module), 28
asab.socket (module), 30
asab.timer (module), 29
AsyncIOHandler (class in asab.log), 22

B
BLACK (asab.log.StructuredDataFormatter attribute), 22
BLUE (asab.log.StructuredDataFormatter attribute), 22
Broker (class in asab.mom.broker), 11

C
command line option

-c <CONFIG>,-config <CONFIG>, 31
-d , -daemonize, 31
-h , -help, 31
-k , -kill, 31
-l <LOG_FILE>,-log-file <LOG_FILE>,

31
-s , -syslog, 31
-v , -verbose, 31
Application.exit!, 26
Application.hup!, 26

39

ASAB Documentation

Application.init!, 25
Application.run!, 25
Application.stop!, 26
Application.tick!, 26
Application.tick/10!, 26
Application.tick/1800!, 26
Application.tick/300!, 26
Application.tick/3600!, 26
Application.tick/43200!, 26
Application.tick/60!, 26
Application.tick/600!, 26
Application.tick/86400!, 26

Config (in module asab), 16
ConfigParser (class in asab.config), 16
create_argument_parser() (asab.Application

method), 15
create_server() (asab.socket.StreamSocketServerService

method), 30
CYAN (asab.log.StructuredDataFormatter attribute), 22

D
delete() (asab.abc.singleton.Singleton class method),

28

E
emit() (asab.log.AsyncIOHandler method), 22
empty_sd (asab.log.StructuredDataFormatter at-

tribute), 22
empty_sd (asab.log.SyslogRFC5424Formatter at-

tribute), 22
ExitCode (asab.Application attribute), 14

F
finalize() (asab.Application method), 14
finalize() (asab.Module method), 28
finalize() (asab.Service method), 27
finalize() (asab.socket.StreamSocketServerService

method), 30
format() (asab.log.StructuredDataFormatter method),

22
formatTime() (asab.log.StructuredDataFormatter

method), 22

G
get_service() (asab.Application method), 15
getseconds() (asab.Config method), 18
GREEN (asab.log.StructuredDataFormatter attribute), 22

I
initialize() (asab.Application method), 13
initialize() (asab.Module method), 28
initialize() (asab.Service method), 27
is_started() (asab.timer.Timer method), 29

L
load() (asab.pdict.PersistentDict method), 29
Logging (class in asab.log), 22
Loop (asab.Application attribute), 13

M
MacOSXSyslogFormatter (class in asab.log), 22
MAGENTA (asab.log.StructuredDataFormatter attribute),

22
main() (asab.Application method), 14
message() (asab.Subscriber method), 24
Metrics (class in asab.metrics), 12
Module (class in asab), 27
Module (class in asab.metrics), 12
Modules (asab.Application attribute), 15
MOMService (class in asab.mom.service), 11

P
parse_args() (asab.Application method), 15
PersistentDict (class in asab.pdict), 28
publish() (asab.mom.broker.Broker method), 11
publish() (asab.PubSub method), 25
PubSub (asab.Application attribute), 25
PubSub (class in asab), 23

R
RED (asab.log.StructuredDataFormatter attribute), 22
render_struct_data()

(asab.log.StructuredDataFormatter method),
22

restart() (asab.timer.Timer method), 29
rotate() (asab.log.Logging method), 22
run() (asab.Application method), 14

S
Service (class in asab), 26
Service.App (in module asab), 27
Service.Name (in module asab), 27
Services (asab.Application attribute), 15
ServiceWebSession (class in asab.web.session), 9
session_middleware() (in module

asab.web.session), 9
set_exit_code() (asab.Application method), 14
Singleton (class in asab.abc.singleton), 28
start() (asab.timer.Timer method), 30
stop() (asab.Application method), 14
stop() (asab.timer.Timer method), 30
store() (asab.pdict.PersistentDict method), 29
StreamSocketServerService (class in

asab.socket), 30
StructuredDataFormatter (class in asab.log), 22
subscribe() (asab.mom.broker.Broker method), 11
subscribe() (asab.PubSub method), 23

40 Index

ASAB Documentation

subscribe() (asab.Subscriber method), 24
subscribe_all() (asab.PubSub method), 23
Subscriber (class in asab), 24
SyslogRFC3164Formatter (class in asab.log), 22
SyslogRFC5424Formatter (class in asab.log), 22

T
time() (asab.Application method), 16
Timer (class in asab.timer), 29

U
unsubscribe() (asab.PubSub method), 24
update() (asab.pdict.PersistentDict method), 29

W
Webapp (asab.web.service.WebService attribute), 9
WebService (class in asab.web.service), 9
WHITE (asab.log.StructuredDataFormatter attribute), 22

Y
YELLOW (asab.log.StructuredDataFormatter attribute),

22

Index 41

	ASAB is designed to be powerful yet simple
	ASAB is a right choice when
	Indices and tables
	Python Module Index
	Index

