

Asynchronous Server Application Boilerplate’s documentation!

Asynchronous Server App Boilerplate (or ASAB for short) minimizes the amount of code that one needs to write when building a server application in Python 3.5+.
ASAB can also be seen as the extension to asyncio that provides a (more or less) complete application framework.

ASAB is developed on GitHub [https://github.com/TeskaLabs/asab/]. Contributions are welcome!

ASAB is designed to be simple

import asab

class MyApplication(asab.Application):
 async def main(self):
 print("Hello world!")
 self.stop()

if __name__ == "__main__":
 app = MyApplication()
 app.run()

Content

	Getting started

	Application
	Event Loop

	Application Lifecycle

	Module registry

	Service registry

	Command-line parser

	Configuration
	Based on ConfigParser

	Automatic load of configuration

	Including other configuration files

	Configuration default values

	Environment variables in configration

	Logging
	Recommended use

	Verbose mode

	Logging Levels

	Structured data

	Logging to file

	Logging to syslog

	Reference

	Metrics

	Publish-Subscribe
	Subscription

	Publishing

	Application-wide PubSub

	Service
	Lifecycle

	Module
	Structure

	Lifecycle

	Various utility classes
	Singleton

	Persistent dictionary

	Timer

	Sockets

	The web server
	Web Service

	Sessions

	The message-oriented middleware
	MOM Service

	Broker

Administration

	Installation
	Install ASAB using pip

	Install ASAB using easy_install

	Install ASAB for a GitHub

	ASAB Command-line interface
	Configuration

	Logging

	Daemon

	Containerisation
	ASAB in a LXC/LXD container

	systemd
	Start of ASAB Server

	Stop of ASAB Server

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Make sure you have both pip [https://pip.pypa.io/en/stable/installing/] and at
least version 3.5 of Python before starting. ASAB uses the new async/await
syntax, so earlier versions of python won’t work.

	Install ASAB: python3 -m pip install asab

	Create a file called main.py with the following code:

#!/usr/bin/env python3
import asab

class MyApplication(asab.Application):
 async def main(self):
 print("Hello world")
 self.stop()

if __name__ == '__main__':
 app = MyApplication()
 app.run()

	Run the server: python3 main.py

You now have a working ASAB application server, ready for your mission!

Application

	
class asab.Application

	

The Application class maintains the global application state.
You can provide your own implementation by creating a subclass.
There should be only one Application object in the process.

Subclassing:

import asab

class MyApplication(asab.Application):
 pass

if __name__ == '__main__':
 app = MyApplication()
 app.run()

Direct use of Application object:

import asab

if __name__ == '__main__':
 app = asab.Application()
 app.run()

Event Loop

	
Application.Loop

	

The asyncio event loop that is used by this application.

asyncio.ensure_future(my_coro(), loop=Application.Loop)

Application Lifecycle

The application lifecycle is divided into 3 phases: init-time, run-time and exit-time.

Init-time

	
Application.__init__()

	

The init-time happens during Application constructor call.
The Publish-Subscribe message Application.init! is published during init-time.
The Config is loaded during init-time.

	
Application.initialize()

	

The application object executes asynchronous callback Application.initialize(), which can be overriden by an user.

class MyApplication(asab.Application):
 async def initialize(self):
 # Custom initialization
 from module_sample import Module
 self.add_module(Module)

Run-time

	
Application.run()

	

Enter a run-time. This is where the application spends the most time typically.
The Publish-Subscribe message Application.run! is published when run-time begins.

The method returns the value of Application.ExitCode.

	
Application.main()

	

The application object executes asynchronous callback Application.main(), which can be overriden.
If main() method is completed without calling stop(), then the application server will run forever (this is the default behaviour).

class MyApplication(asab.Application):
 async def main(self):
 print("Hello world!")
 self.stop()

	
Application.stop(exit_code:int=None)

	

The method Application.stop() gracefully terminates the run-time and commence the exit-time.
This method is automatically called by SIGINT and SIGTERM. It also includes a response to Ctrl-C on UNIX-like system.
When this method is called 3x, it abruptly exits the application (aka emergency abort).

The parameter exit_code allows you to specify the application exit code (see Exit-Time chapter).

Note: You need to install win32api module to use Ctrl-C or an emergency abord properly with ASAB on Windows. It is an optional dependency of ASAB.

Exit-time

	
Application.finalize()

	

The application object executes asynchronous callback Application.finalize(), which can be overriden by an user.

class MyApplication(asab.Application):
 async def finalize(self):
 # Custom finalization
 ...

The Publish-Subscribe message Application.exit! is published when exit-time begins.

	
Application.set_exit_code(exit_code:int, force:bool=False)

	

Set the exit code of the application, see os.exit() in the Python documentation.
If force is False, the exit code will be set only if the previous value is lower than the new one.
If force is True, the exit code value is set to a exit_code disregarding the previous value.

	
Application.ExitCode

	

The actual value of the exit code.

The example of the exit code handling in the main() function of the application.

if __name__ == '__main__':
 app = asab.Application()
 exit_code = app.run()
 sys.exit(exit_code)

Module registry

For more details see Module class.

	
Application.add_module(module_class)

	

Initialize and add a new module.
The module_class class will be instantiated during the method call.

class MyApplication(asab.Application):
 async def initialize(self):
 from my_module import MyModule
 self.add_module(MyModule)

	
Application.Modules

	

A list of modules that has been added to the application.

Service registry

Each service is identified by its unique service name.
For more details see Service class.

	
Application.get_service(service_name)

	

Locate a service by its service name in a registry and return the Service object.

svc = app.get_service("service_sample")
svc.hello()

	
Application.Services

	

A dictionary of registered services.

Command-line parser

	
Application.parse_args()

	

The application object calls this method during init-time to process a command-line arguments.
argparse is used to process arguments.
You can overload this method to provide your own implementation of command-line argument parser.

	
Application.Description

	

The Description attribute is a text that will be displayed in a help text (--help).
It is expected that own value will be provided.
The default value is "" (empty string).

Configuration

	
asab.Config

	

The configuration is provided by Config object which is a singleton. It means that you can access Config from any place of your code, without need of explicit initialisation.

import asab

Initialize application object and hence the configuration
app = asab.Application()

Access configuration values anywhere
my_conf_value = asab.Config['section_name']['key1']

Based on ConfigParser

The Config is inherited from Python Standard Library configparser.ConfigParser class. which implements a basic configuration language which provides a structure similar to what’s found in Microsoft Windows INI files.

	
class asab.config.ConfigParser

	

Example of the configuration file:

[bitbucket.org]
User = hg

[topsecret.server.com]
Port = 50022
ForwardX11 = no

And this is how you access configuration values:

>>> asab.Config['topsecret.server.com']['ForwardX11']
'no'

Automatic load of configuration

If a configuration file name is specified, the configuration is automatically loaded from a configuration file during initialiation time of Application.
The configuration file name can be specified by one of -c command-line argument (1), ASAB_CONFIG environment variable (2) or config [general] config_file default value (3).

./sample_app.py -c ./etc/sample.conf

Including other configuration files

You can specify one or more additional configuration files that are loaded and merged from an main configuration file.
It is done by [general] include configuration value. Multiple paths are separated by os.pathsep (: on Unix).
The path can be specified as a glob (e.g. use of * and ? wildcard characters), it will be expanded by glob module from Python Standard Library.
Included configuration files may not exists, this situation is silently ignored.

[general]
include=./etc/site.conf:./etc/site.d/*.conf

Configuration default values

	
Config.add_defaults(dictionary)

	

This is how you can extend configuration default values:

asab.Config.add_defaults(
 {
 'section_name': {
 'key1': 'value',
 'key2': 'another value'
 },
 'other_section': {
 'key3': 'value',
 },
 }
)

Environment variables in configration

Environment variables found in values are automaticall expanded.

[section_name]
persistent_dir=${HOME}/.myapp/

>>> asab.Config['section_name']['persistent_dir']
'/home/user/.myapp/'

Logging

ASAB logging is built on top of a standard Python logging module.
It means that it logs to stderr when running on a console and ASAB also provides file and syslog output (both RFC5424 and RFC3164) for background mode of operations.

Log timestamps are captured with sub-second precision (depending on the system capabilities) and displayed including microsecond part.

Recommended use

We recommend to create a logger L in every module that captures all necessary logging output.
Alternative logging strategies are also supported.

import logging
L = logging.getLogger(__name__)

...

L.info("Hello world!")

Example of the output to the console:

25-Mar-2018 23:33:58.044595 INFO myapp.mymodule : Hello world!

Verbose mode

The command-line argument -v enables verbose logging, respectively sets logging.DEBUG and enables asyncio debug logging.

The actual verbose mode is avaiable at asab.Config["logging"]["verbose"] boolean option.

Logging Levels

ASAB uses Python logging levels with the addition of LOG_NOTICE level.
LOG_NOTICE level is similar to logging.INFO level but it is visible in even in non-verbose mode.

	Level

	Numeric value

	Syslog Severity level

	CRITICAL

	50

	Critical / crit / 2

	ERROR

	40

	Error / err / 3

	WARNING

	30

	Warning / warning / 4

	LOG_NOTICE

	25

	Notice / notice / 5

	INFO

	20

	Informational / info / 6

	DEBUG

	10

	Debug / debug / 7

	NOTSET

	0

	

Structured data

ASAB supports a structured data to be added to a log entry.
It follows the RFC 5424 [https://tools.ietf.org/html/rfc5424], section STRUCTURED-DATA.
Structured data are a dictionary, that has to be seriazable to JSON.

L.info("Hello world!", struct_data={'key1':'value1', 'key2':2})

Logging to file

The command-line argument -l on command-line enables logging to file.
ASAB supports a log rotation mechanism. A log rotation is triggered by a UNIX signal SIGHUP.

It is implemented using logging.handlers.RotatingFileHandler from a Python standard library.

A configuration section [[logging:file]] can be used to specify details about desired syslog logging.

Example of the configuration file section:

[[logging:file]]
path=/var/log/asab.log
format="%%(asctime)s %%(levelname)s %%(name)s %%(struct_data)s%%(message)s",
datefmt="%%d-%%b-%%Y %%H:%%M:%%S.%%f"
backup_count=0

Note: Putting non-empty path option in the configuration file is the equivalent for -l argument respectively it enables logging to file as well.

Logging to syslog

The command-line argument -s enables logging to syslog.

A configuration section [[logging:syslog]] can be used to specify details about desired syslog logging.

Example of the configuration file section:

[[logging:syslog]]
enabled=true
format=5
address=tcp://syslog.server.lan:1554/

enabled is equivalent to command-line switch -s and it enables syslog logging target.

format speficies which logging format will be used.
Possible values are:

	5 for (new) syslog format (RFC 5424 [https://tools.ietf.org/html/rfc5424]) ,

	3 for old BSD syslog format (RFC 3164 [https://tools.ietf.org/html/rfc3164]), typically used by /dev/log and

	m for Mac OSX syslog flavour that is based on BSD syslog format but it is not fully compatible.

The default value is 3 on Linux and m on Mac OSX.

address specifies the location of the Syslog server. It could be a UNIX path such as /dev/log or URL.
Possible URL values:

	tcp://syslog.server.lan:1554/ for Syslog over TCP

	udp://syslog.server.lan:1554/ for Syslog over UDP

	unix-connect:///path/to/syslog.socket for Syslog over UNIX socket (stream)

	unix-sendto:///path/to/syslog.socket for Syslog over UNIX socket (datagram), equivalent to /path/to/syslog.socket, used by a /dev/log.

The default value is a /dev/log on Linux or /var/run/syslog on Mac OSX.

Reference

	
class asab.log.AsyncIOHandler(loop, family, sock_type, address, facility=17)

	Bases: logging.Handler

A logging handler similar to a standard logging.handlers.SocketHandler that utilizes asyncio.
It implements a queue for decoupling logging from a networking. The networking is fully event-driven via asyncio mechanisms.

	
emit(record)

	This is the entry point for log entries.

	
class asab.log.Logging(app)

	Bases: object

	
rotate()

	

	
class asab.log.MacOSXSyslogFormatter(fmt=None, datefmt=None, style='%', sd_id='sd')

	Bases: asab.log.StructuredDataFormatter

It implements Syslog formatting for Mac OSX syslog (aka format m).

	
class asab.log.StructuredDataFormatter(facility=16, fmt=None, datefmt=None, style='%', sd_id='sd')

	Bases: logging.Formatter

The logging formatter that renders log messages that includes structured data.

	
empty_sd = ''

	

	
format(record)

	Format the specified record as text.

	
formatTime(record, datefmt=None)

	Return the creation time of the specified LogRecord as formatted text.

	
render_struct_data(struct_data)

	Return the string with structured data.

	
class asab.log.SyslogRFC3164Formatter(fmt=None, datefmt=None, style='%', sd_id='sd')

	Bases: asab.log.StructuredDataFormatter

It implements Syslog formatting for Mac OSX syslog (aka format 3).

	
class asab.log.SyslogRFC5424Formatter(fmt=None, datefmt=None, style='%', sd_id='sd')

	Bases: asab.log.StructuredDataFormatter

It implements Syslog formatting for Mac OSX syslog (aka format 5).

	
empty_sd = ' '

	

Metrics

	
class asab.metrics.Metrics(app)

	

	
class asab.metrics.Module(app)

	Bases: asab.abc.module.Module

Publish-Subscribe

Publish–subscribe is a messaging pattern where senders of messages, called publishers, send the messages to receivers, called subscribers, via PubSub message bus. Publishers don’t directly interact with subscribers in any way. Similarly, subscribers express interest in one or more message types and only receive messages that are of interest, without knowledge of which publishers, if any, there are.

	
class asab.PubSub(app)

	

ASAB PubSub operates with a simple messages, defined by their message type, which is a string.
We recommend to add ! (explamation mark) at the end of the message type in order to distinguish this object from other types such as Python class names or functions.
Example of the message type is e.g. Application.run! or Application.tick/600!.

The message can carry an optional positional and keyword arguments.
The delivery of a message is implemented as a the standard Python function.

Note: There is an default, application-wide Publish-Subscribe message bus at Application.PubSub that can be used to send messages.
Alternatively, you can create your own instance of PubSub and enjoy isolated PubSub delivery space.

Subscription

	
PubSub.subscribe(message_type, callback)

	

Subscribe to a message type. Messages will be delivered to a callback callable (function or method).
The callback can be a standard callable or an async coroutine.
Asynchronous callback means that the delivery of the message will happen in a coroutine, asynchronously.

Callback callable will be called with the first argument

Example of a subscription to an Application.tick! messages.

class MyClass(object):
 def __init__(self, app):
 app.PubSub.subscribe("Application.tick!", self.on_tick)

 def on_tick(self, message_type):
 print(message_type)

Asynchronous version of the above:

class MyClass(object):
 def __init__(self, app):
 app.PubSub.subscribe("Application.tick!", self.on_tick)

 async def on_tick(self, message_type):
 await asyncio.sleep(5)
 print(message_type)

	
PubSub.subscribe_all(obj)

	

To simplify the process of subscription to PubSub, ASAB offers the decorator-based “subscribe all” functionality.

In the followin example, both on_tick() and on_exit() methods are subscribed to Application.PubSub message bus.

class MyClass(object):
 def __init__(self, app):
 app.PubSub.subscribe_all(self)

 @asab.subscribe("Application.tick!")
 async def on_tick(self, message_type):
 print(message_type)

 @asab.subscribe("Application.exit!")
 def on_exit(self, message_type):
 print(message_type)

	
PubSub.unsubscribe(message_type, callback)

	

Unsubscribe from a message delivery.

	
class asab.Subscriber(pubsub=None, *message_types)

	Subscriber object allows to consume PubSub messages in coroutines.
It subscribes for various message types and consumes them.
It works on FIFO basis (First message In, first message Out).
If pubsub argument is None, the initial subscription is skipped.

subscriber = asab.Subscriber(
 app.PubSub,
 "Application.tick!",
 "Application.stop!"
)

	
message()

	Wait for a message asynchronously.
Returns a three-members tuple (message_type, args, kwargs).

	# Use in await statement

	message = await subscriber.message()

	
subscribe(pubsub, message_type)

	Subscribe for more message types. This method can be called many times with various pubsub objects.

Publishing

	
PubSub.publish(message_type, *args, **kwargs)

	

Publish a message to the PubSub message bus.
It will be delivered to each subscriber synchronously.
It means that the method returns after each subscribed callback is called.

The example of a message publish to the Application.PubSub message bus:

def my_function(app):
 app.PubSub.publish("mymessage!")

Asynchronous message delivery can be trigged by providing asynchronously=True keyword argument.
Each subscriber is then handled in a dedicated Future object.
The method returns immediatelly and the delivery of the message to subscribers happens, when control returns to the event loop.

The example of a asynchronous version of a message publish to the Application.PubSub message bus:

def my_function(app):
 app.PubSub.publish("mymessage!", asynchronously=True)

Application-wide PubSub

	
Application.PubSub

	

The ASAB provides the application-wide Publish-Subscribe message bus.

Well-Known Messages

	
Application.init!

	

This message is published when application is in the init-time.
It is actually one of the last things done in init-time, so the application environment is almost ready for use.
It means that configuration is loaded, logging is setup, the event loop is constructed etc.

	
Application.run!

	

This message is emitted when application enters the run-time.

	
Application.stop!

	

This message is emitted when application wants to stop the run-time.
It can be sent multiple times because of a process of graceful run-time termination.
The first argument of the message is a counter that increases with every Application.stop! event.

	
Application.exit!

	

This message is emitted when application enter the exit-time.

	
Application.tick!

	

	
Application.tick/10!

	

	
Application.tick/60!

	

	
Application.tick/300!

	

	
Application.tick/600!

	

	
Application.tick/1800!

	

	
Application.tick/3600!

	

	
Application.tick/43200!

	

	
Application.tick/86400!

	

The application publish periodically “tick” messages.
The default tick frequency is 1 second but you can change it by configuration [general] tick_period.
Application.tick! is published every tick. Application.tick/10! is published every 10th tick and so on.

	
Application.hup!

	

This message is emitted when application receives UNIX signal SIGHUP or equivalent.

Service

	
class asab.Service(app)

	

Service objects are registered at the service registry, managed by an application object.
See Application.Services for more details.

An example of a typical service class skeleton:

class MyService(asab.Service):

 def __init__(self, app, service_name):
 super().__init__(app, service_name)
 ...

 async def initialize(self, app):
 ...

 async def finalize(self, app):
 ...

 def service_method(self):

This is how a service is created and registered:

mysvc = MyService(app, "my_service")

This is how a service is located and used:

mysvc = app.get_service("my_service")
mysvc.service_method()

	
Service.Name

	

Each service is identified by its name.

Lifecycle

	
Service.initialize(app)

	

Called when the service is initialized.
It can be overriden by an user.

	
Service.finalize(app)

	

Called when the service is finalized e.g. during application exit-time.
It can be overriden by an user.

Module

	
class asab.Module

	

Modules are registered at the module registry, managed by an application object.
See Application.Modules for more details.
Module can be loaded by ASAB and typically provides one or more Service objects.

Structure

Recommended structure of the ASAB module:

mymodule/
 __init__.py
 myservice.py

Content of the __init__.py:

import asab
from .myservice import MyService

Extend ASAB configuration defaults
asab.Config.add_defaults({
 'mymodule': {
 'foo': 'bar'
 }
})

class MyModule(asab.Module):
 def __init__(self, app):
 super().__init__(app)
 self.service = MyService(app, "MyService")

And this is how the module is loaded:

from mymodule import MyModule
app.add_module(MyModule)

For more details see Application.add_module.

Lifecycle

	
Module.initialize(app)

	

Called when the module is initialized.
It can be overriden by an user.

	
Module.finalize(app)

	

Called when the module is finalized e.g. during application exit-time.
It can be overriden by an user.

Various utility classes

Singleton

	
class asab.abc.singleton.Singleton

	The singleton pattern [https://en.wikipedia.org/wiki/Singleton_pattern] is a software design pattern that restricts the instantiation of a class to one object.

Note: The implementation idea is borrowed from “Creating a singleton in Python [https://stackoverflow.com/questions/6760685/creating-a-singleton-in-python]” question on StackOverflow.

Usage:

import asab

class MyClass(metaclass=asab.Singleton):
 ...

Persistent dictionary

	
class asab.pdict.PersistentDict(path)

	Bases: collections.abc.MutableMapping

The persistent dictionary works as the regular Python dictionary but the content of the dictionary is stored in the file.
You cat think of a PersistentDict as a simple key-value store [https://en.wikipedia.org/wiki/Key-value_database].
It is not optimized for a frequent access. This class provides common dict interface.

Warning: You can only store objects in the persistent dictionary that are seriazable.

	
load([keys]) → [values].

	Optimised version of the get() operations that load multiple keys from the persistent store at once.
It saves IO in exchange for possible race conditions.

	Parameters

	keys – A list of keys.

	Returns

	A list of values in the same order to provided key list.

v1, v2, v3 = pdict.load('k1', 'k2', 'k3')

	
update([E,]**F) → None.

	
	Update D from mapping/iterable E and F.

	
	If E present and has a .keys() method, does: for k in E: D[k] = E[k]

	If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v

	In either case, this is followed by: for k, v in F.items(): D[k] = v

Inspired by a https://github.com/python/cpython/blob/3.6/Lib/_collections_abc.py

Note: A recommended way of initializing the persistent dictionary:

PersistentState = asab.PersistentDict("some.file")
PersistentState.setdefault('foo', 0)
PersistentState.setdefault('bar', 2)

Timer

	
class asab.timer.Timer(app, handler, autorestart=False) → Timer.

	Bases: object

The relative and optionally repeating timer for asyncio.

This class is simple relative timer that generate an event after a given time, and optionally repeating in regular intervals after that.

	Parameters

	
	app – An ASAB application.

	handler – A coro or future that will be called when a timer triggers.

	autorestart (boolean) – If True then a timer will be automatically restarted after triggering.

	Variables

	
	Handler – A coro or future that will be called when a timer triggers.

	Task – A future that represent the timer task.

	App – An ASAB app.

	AutoRestart (boolean) – If True then a timer will be automatically restarted after triggering.

The timer object is initialized as stopped.

Note: The implementation idea is borrowed from “Python - Timer with asyncio/coroutine [https://stackoverflow.com/questions/45419723/python-timer-with-asyncio-coroutine]” question on StackOverflow.

	
is_started() → boolean

	Return True is the timer is started otherwise returns False.

	
restart(timeout)

	Restart the timer.

	Parameters

	timeout (float/int) – A timer delay in seconds.

	
start(timeout)

	Start the timer.

	Parameters

	timeout (float/int) – A timer delay in seconds.

	
stop()

	Stop the timer.

Sockets

	
class asab.socket.StreamSocketServerService(app)

	Bases: asab.abc.service.Service

Example of use:

class ServiceMyProtocolServer(asab.StreamSocketServerService):

	async def initialize(self, app):

	host = asab.Config.get(‘http’, ‘host’)
port = asab.Config.getint(‘http’, ‘port’)

L.debug(“Starting server on {} {} …”.format(host, port))
await self.create_server(app, MyProtocol, [(host, port)])

	
create_server(app, protocol, addrs)

	

	
finalize(app)

	

The web server

ASAB provides a web server in a asab.web module.
This module offers an integration of a aiohttp web server [http://aiohttp.readthedocs.io/en/stable/web.html].

	Before you start, make sure that you have aiohttp module installed.

$ pip3 install aiohttp

	The following code creates a simple web server application

#!/usr/bin/env python3
import asab
import aiohttp

class MyApplication(asab.Application):

 async def initialize(self):
 # Load the web service module
 from asab.web import Module
 self.add_module(Module)

 # Locate the web service
 svc = self.get_service("asab.WebService")

 # Add a route
 svc.WebApp.router.add_get('/hello', self.hello)

 # Simplistic view
 async def hello(self, request):
 return aiohttp.web.Response(text='Hello!\n')

if __name__ == '__main__':
 app = MyApplication()
 app.run()

	Test it with curl

$ curl http://localhost:8080/hello
Hello!

Web Service

	
class asab.web.service.WebService

	

Service localization example:

from asab.web import Module
self.add_module(Module)
svc = self.get_service("asab.WebService")

	
WebService.Webapp

	

An instance of a aiohttp.web.Application class.

svc.WebApp.router.add_get('/hello', self.hello)

Sessions

ASAB Web Service provides an implementation of the web sessions.

	
class asab.web.session.ServiceWebSession

	

TODO: …

	
asab.web.session.session_middleware(storage)

	

TODO: …

The message-oriented middleware

Message-oriented middleware (MOM) sends and receive messages between distributed systems.
MOM allows application components to be distributed over heterogeneous platforms and reduces the complexity of developing such applications.
The middleware creates a distributed communications layer that insulates the application developer from the details of the various network interfaces.
It is a typical component of the microservice architecture, used for asynchronous tasks, complements synchronous HTTP REST API.

MOM is typically integrated with Message Queue servers such as RabbitMQ or Kafka.
Messages are distributed thru these systems from and to various brokers.
A message routing mechanism can be added to MQ server to steer a flow of the messages, if needed.

More theory can be found here: https://en.wikipedia.org/wiki/Message-oriented_middleware

MOM Service

	
class asab.mom.service.MOMService

	

Message-oriented middleware is provided by a MOMService in a asab.mom module.

Service initialization and localization example:

from asab.mom import Module
self.add_module(Module)
svc = self.get_service("asab.MOMService")

Broker

	
class asab.mom.broker.Broker

	

The broker is an object that provides methods for sending and receiving messages.
It is also responsible for a underlaying transport of messages e.g. over the network to other brokers or MQ servers.

A base broker class Broker cannot be created directly, see available brokers below.
Broker creating example:

from asab.mom.amqp import AMQPBroker
broker = AMQPBroker(app, config_section_name="bsfrgeocode:amqp")

Note: MOM Service has to be initialized.

Sending messages

	
Broker.publish(self, body, target:str='', correlation_id:str=None)

	

Publishe the message to a MQ server.

message = "Hello World!"
await broker.publish(message, target="example")

Receiving messages

	
Broker.subscribe(subscription:str)

	

Subscribe the broker to a specific subscription (e.g. topic or queue) on the MQ server.
Once completed, messages starts to flow in and they are routed based on the target.

	
Broker.add(target:str, handler, reply_to:str=None)

	

A message handler must be a coroutine that accept properties and body of the incoming message.
Incoming messages are routed based on their target to a specific handler.
If there is no registered handler for a target, the message is discarted.

broker.subscribe("topic")
broker.add('example', example_handler)

async def example_handler(self, properties, body):
 print("Recevied", body)

Replying to a message

Message-oriented middleware is the asynchronous message passing model.
By a mechanism of a message correlation, MOM service allow to reply to a message in the handler.

Example of the handler:

async def example_handler(self, properties, body):
 print("Recevied", body)
 return "Hi there too"

Available brokers

	
class asab.mom.amqp.AMQPBroker

	

Installation

ASAB is distributed via pypi [https://pypi.org/project/asab/].

Install ASAB using pip

This is the recommended installation method.

$ pip install asab

Install ASAB using easy_install

$ easy_install asab

Install ASAB for a GitHub

To install ASAB from a master branch of the GIT repository, use following command.

Note: Git has to be installed in order to successfuly complete the installation.

$ pip install git+https://github.com/TeskaLabs/asab.git

ASAB Command-line interface

ASAB-based application provides the command-line interface by default.
Here is an overview of the common command-line arguments.

	
-h, --help

	

Show a help.

Configuration

	
-c <CONFIG>,--config <CONFIG>

	

Load configuration file from a file CONFIG.

Logging

	
-v, --verbose

	

Increase the logging level to DEBUG aka be more verbose about what is happening.

	
-l <LOG_FILE>,--log-file <LOG_FILE>

	

Log to a file LOG_FILE.

	
-s, --syslog

	

Log to a syslog.

Daemon

Python module python-daemon has to be installed in order to support daemonosation functions.

$ pip3 install asab python-daemon

	
-d, --daemonize

	

Launch the application in the background aka daemonized.

Daemon-related section of Config file:

[daemon]
pidfile=/var/run/myapp.pid
uid=nobody
gid=nobody
working_dir=/tmp

Configuration options pidfile, uid , gid and working_dir are supported.

	
-k, --kill

	

Shutdown the application running in the background (started previously with -d argument).

Containerisation

ASAB is designed for deployment into containers such as LXC/LXD or Docker.
It allows to build e.g. microservices that provides REST interface or consume MQ messages while being deployed into a container for a sake of the infrastructure flexibility.

ASAB in a LXC/LXD container

	Prepare LXC/LXD container based on Alpine Linux

$ lxc launch images:alpine/3.8 asab

	Swich into a container

$ lxc exec asab -- /bin/ash

	Adjust a container

$ sed -i 's/^tty/# tty/g' /etc/inittab

	Prepare Python3 environment

$ apk update
$ apk upgrade
$ apk add --no-cache python3

$ python3 -m ensurepip
$ rm -r /usr/lib/python*/ensurepip
$ pip3 install --upgrade pip setuptools

	Deploy ASAB

$ pip3 install asab

	Deploy dependencies

$ pip3 install asab python-daemon

	(Optionally if you want to use asab.web module) install aiohttp dependecy

$ pip3 install aiohttp

	Use OpenRC to automatically start/stop ASAB application

$ vi /etc/init.d/asab-app

Adjust the example of OpenRC init file [https://github.com/TeskaLabs/asab/blob/master/doc/asab-openrc].

$ chmod a+x /etc/init.d/asab-app
$ rc-update add asab-app

Note: If you need to install python packages that require compilation using C compiler, you have to add following dependencies:

$ apk add --virtual .buildenv python3-dev
$ apk add --virtual .buildenv gcc
$ apk add --virtual .buildenv musl-dev

And removal of the build tools after pip install:

$ apk del .buildenv

systemd

	Create a new Systemd unit file in /etc/systemd/system/:

$ sudo vi /etc/systemd/system/asab.service

Adjust the example of SystemD unit file [https://github.com/TeskaLabs/asab/blob/master/doc/asab.service].

	Let systemd know that there is a new service:

$ sudo systemctl enable asab

To reload existing unit file after changing, use this:

$ sudo systemctl daemon-reload

	ASAB Application Server service for systemd is now ready.

Start of ASAB Server

$ sudo service asab start

Stop of ASAB Server

$ sudo service asab stop

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 asab	

 	
 	
 asab.abc	

 	
 	
 asab.abc.singleton	

 	
 	
 asab.log	

 	
 	
 asab.metrics	

 	
 	
 asab.pdict	

 	
 	
 asab.socket	

 	
 	
 asab.timer	

Index

 Symbols
 | _
 | A
 | B
 | C
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | W

Symbols

 	
 	
 -c <CONFIG>,--config <CONFIG>

 	command line option

 	
 -d , --daemonize

 	command line option

 	
 -h , --help

 	command line option

 	
 -k , --kill

 	command line option

 	
 	
 -l <LOG_FILE>,--log-file <LOG_FILE>

 	command line option

 	
 -s , --syslog

 	command line option

 	
 -v , --verbose

 	command line option

_

 	
 	__init__() (asab.Application method)

A

 	
 	add() (asab.mom.broker.Broker method)

 	add_defaults() (asab.Config method)

 	add_module() (asab.Application method)

 	AMQPBroker (class in asab.mom.amqp)

 	Application (class in asab)

 	Application.Description (in module asab)

 	
 Application.exit!

 	command line option

 	
 Application.hup!

 	command line option

 	
 Application.init!

 	command line option

 	
 Application.run!

 	command line option

 	
 Application.stop!

 	command line option

 	
 Application.tick!

 	command line option

 	
 Application.tick/10!

 	command line option

 	
 Application.tick/1800!

 	command line option

 	
 	
 Application.tick/300!

 	command line option

 	
 Application.tick/3600!

 	command line option

 	
 Application.tick/43200!

 	command line option

 	
 Application.tick/60!

 	command line option

 	
 Application.tick/600!

 	command line option

 	
 Application.tick/86400!

 	command line option

 	asab.abc (module)

 	asab.abc.singleton (module)

 	asab.log (module)

 	asab.metrics (module)

 	asab.pdict (module)

 	asab.socket (module)

 	asab.timer (module)

 	AsyncIOHandler (class in asab.log)

B

 	
 	Broker (class in asab.mom.broker)

C

 	
 	
 command line option

 	-c <CONFIG>,--config <CONFIG>

 	-d , --daemonize

 	-h , --help

 	-k , --kill

 	-l <LOG_FILE>,--log-file <LOG_FILE>

 	-s , --syslog

 	-v , --verbose

 	Application.exit!

 	Application.hup!

 	Application.init!

 	Application.run!

 	Application.stop!

 	Application.tick!

 	Application.tick/10!

 	Application.tick/1800!

 	Application.tick/300!

 	Application.tick/3600!

 	Application.tick/43200!

 	Application.tick/60!

 	Application.tick/600!

 	Application.tick/86400!

 	
 	Config (in module asab)

 	ConfigParser (class in asab.config)

 	create_server() (asab.socket.StreamSocketServerService method)

E

 	
 	emit() (asab.log.AsyncIOHandler method)

 	empty_sd (asab.log.StructuredDataFormatter attribute)

 	(asab.log.SyslogRFC5424Formatter attribute)

 	
 	ExitCode (asab.Application attribute)

F

 	
 	finalize() (asab.Application method)

 	(asab.Module method)

 	(asab.Service method)

 	(asab.socket.StreamSocketServerService method)

 	
 	format() (asab.log.StructuredDataFormatter method)

 	formatTime() (asab.log.StructuredDataFormatter method)

G

 	
 	get_service() (asab.Application method)

I

 	
 	initialize() (asab.Application method)

 	(asab.Module method)

 	(asab.Service method)

 	
 	is_started() (asab.timer.Timer method)

L

 	
 	load() (asab.pdict.PersistentDict method)

 	
 	Logging (class in asab.log)

 	Loop (asab.Application attribute)

M

 	
 	MacOSXSyslogFormatter (class in asab.log)

 	main() (asab.Application method)

 	message() (asab.Subscriber method)

 	Metrics (class in asab.metrics)

 	
 	Module (class in asab)

 	(class in asab.metrics)

 	Modules (asab.Application attribute)

 	MOMService (class in asab.mom.service)

P

 	
 	parse_args() (asab.Application method)

 	PersistentDict (class in asab.pdict)

 	publish() (asab.mom.broker.Broker method)

 	(asab.PubSub method)

 	
 	PubSub (asab.Application attribute)

 	(class in asab)

R

 	
 	render_struct_data() (asab.log.StructuredDataFormatter method)

 	restart() (asab.timer.Timer method)

 	
 	rotate() (asab.log.Logging method)

 	run() (asab.Application method)

S

 	
 	Service (class in asab)

 	Service.Name (in module asab)

 	Services (asab.Application attribute)

 	ServiceWebSession (class in asab.web.session)

 	session_middleware() (in module asab.web.session)

 	set_exit_code() (asab.Application method)

 	Singleton (class in asab.abc.singleton)

 	start() (asab.timer.Timer method)

 	stop() (asab.Application method)

 	(asab.timer.Timer method)

 	
 	StreamSocketServerService (class in asab.socket)

 	StructuredDataFormatter (class in asab.log)

 	subscribe() (asab.mom.broker.Broker method)

 	(asab.PubSub method)

 	(asab.Subscriber method)

 	subscribe_all() (asab.PubSub method)

 	Subscriber (class in asab)

 	SyslogRFC3164Formatter (class in asab.log)

 	SyslogRFC5424Formatter (class in asab.log)

T

 	
 	Timer (class in asab.timer)

U

 	
 	unsubscribe() (asab.PubSub method)

 	
 	update() (asab.pdict.PersistentDict method)

W

 	
 	Webapp (asab.web.service.WebService attribute)

 	
 	WebService (class in asab.web.service)

Asynchronous Server Application Boilerplate’s documentation!

Asynchronous Server App Boilerplate (or ASAB for short) minimizes the amount of code that one needs to write when building a server application in Python 3.5+.
ASAB can also be seen as the extension to asyncio that provides a (more or less) complete application framework.

ASAB is developed on GitHub [https://github.com/TeskaLabs/asab/]. Contributions are welcome!

ASAB is designed to be simple

import asab

class MyApplication(asab.Application):
 async def main(self):
 print("Hello world!")
 self.stop()

if __name__ == "__main__":
 app = MyApplication()
 app.run()

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/asab-architecture.png
provides provides

contains loads —P-

contains contains provides

contains

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Asynchronous Server Application Boilerplate’s documentation!

 		
 Getting started

 		
 Application

 		
 Event Loop

 		
 Application Lifecycle

 		
 Init-time

 		
 Run-time

 		
 Exit-time

 		
 Module registry

 		
 Service registry

 		
 Command-line parser

 		
 Configuration

 		
 Based on ConfigParser

 		
 Automatic load of configuration

 		
 Including other configuration files

 		
 Configuration default values

 		
 Environment variables in configration

 		
 Logging

 		
 Recommended use

 		
 Verbose mode

 		
 Logging Levels

 		
 Structured data

 		
 Logging to file

 		
 Logging to syslog

 		
 Reference

 		
 Metrics

 		
 Publish-Subscribe

 		
 Subscription

 		
 Publishing

 		
 Application-wide PubSub

 		
 Well-Known Messages

 		
 Service

 		
 Lifecycle

 		
 Module

 		
 Structure

 		
 Lifecycle

 		
 Various utility classes

 		
 Singleton

 		
 Persistent dictionary

 		
 Timer

 		
 Sockets

 		
 The web server

 		
 Web Service

 		
 Sessions

 		
 The message-oriented middleware

 		
 MOM Service

 		
 Broker

 		
 Sending messages

 		
 Receiving messages

 		
 Replying to a message

 		
 Available brokers

 		
 Installation

 		
 Install ASAB using pip

 		
 Install ASAB using easy_install

 		
 Install ASAB for a GitHub

 		
 ASAB Command-line interface

 		
 Configuration

 		
 Logging

 		
 Daemon

 		
 Containerisation

 		
 ASAB in a LXC/LXD container

 		
 systemd

 		
 Start of ASAB Server

 		
 Stop of ASAB Server

_static/ajax-loader.gif

